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Abstract

A stabilized stochastic finite element implementation for the natural convection system of equations under Bous-

sinesq assumptions with uncertainty in inputs is considered. The stabilized formulations are derived using the varia-

tional multiscale framework assuming a one-step trapezoidal time integration rule. The stabilization parameters are

shown to be functions of the time-step size. Provision is made for explicit tracking of the subgrid-scale solution through

time. A support-space/stochastic Galerkin approach and the generalized polynomial chaos expansion (GPCE)

approach are considered for input–output uncertainty representation. Stochastic versions of standard Rayleigh–Bènard

convection problems are used to evaluate the approach. It is shown that for simulations around critical points, the

GPCE approach fails to capture the highly non-linear input uncertainty propagation whereas the support-space

approach gives fairly accurate results. A summary of the results and findings is provided.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Natural convection is started when the fluid buoyancy effect due to temperature gradients exceeds the

stabilizing viscous effect [1]. The state where these opposing effects neutralize each other is called the first

critical point (here denoted as CP1). Below CP1, the viscous effect dominates, the fluid flow is absent and

heat transfer takes place by conduction. Above CP1, the buoyancy effect dominates, fluid-flow is initiated

and heat transfer is by conduction and convection. When the system inputs fluctuate about CP1, the input–
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output relationship becomes highly non-linear and possibly discontinuous due to the drastic change in the

governing dynamics (convection above CP1 and conduction below). This observation leads us to the focus

of this work: Can we capture the effect of input uncertainty on the flow and temperature patterns in natural

convection (i) far from any critical points (Problem I) and (ii) when the input fluctuations are such that the

system can be above and below CP1 with finite probabilities (Problem II).
In this work, we will use the generalized polynomial chaos expansion (GPCE) approach and the stochas-

tic Galerkin/support-space method [2–9] for uncertainty propagation. The former uses polynomials from

the Wiener–Askey family to represent the system outputs in terms of the uncertain system inputs. The latter

employs finite element discretization of the support space of inputs (regions of strictly positive input joint

probability density). The GPCE suffers in accuracy for highly non-linear input-to-output uncertainty prop-

agation. This problem is not encountered with the support-space method. The common disadvantage of

both approaches is the ‘‘curse of dimensionality’’, i.e., the computational cost increases exponentially as

the inputs approach white noise. In this context, it is also worth mentioning that Le Maitre et al. [8] intro-
duced the Wiener–Haar approach for addressing Problem II. Also, to the best of authors� knowledge, the
stochastic Galerkin method and its variants have not been applied to natural convection problems.

In our previous work [10], we used the VMS approach [11–13] in conjunction with the generalized poly-

nomial chaos for deriving stabilized finite element formulations for stochastic Navier–Stokes and stochastic

advection-diffusion equations. We had assumed that the time-integration procedure does not affect the sta-

bilization and that the subgrid scale/unresolved solution components are quasi-static stochastic processes

and hence need not be tracked in time. These assumptions will be relaxed in the present work. In this

respect, this paper is an extension of our previous work.
The layout of the paper is as follows. In Section 2 the preliminaries for mathematical representation of

uncertainty are provided. The Boussinesq natural convection problem is defined in Section 3. The varia-

tional multiscale framework is used in Section 4 to derive the stabilized weak formulations for the natural

convection equations. Section 5 then discusses some implementation issues for the above problem with re-

gard to the GPCE and the support-space approaches. This is followed in Section 6 by two test examples

corresponding to Problems I and II. A summary of findings is finally provided in Section 7.
2. Mathematical representation of uncertainty in physical systems

2.1. Mathematical preliminaries

Aprobability space is a triple ðX;F;PÞ, whereX is the sample space,F is the r-algebra of subsets (events)
of X and P is a probability measure on F [14]. A real-valued random variable is a function

X : X 7!B; where B is a subset of the real line. In this paper, we will restrict ourselves to continuous random

variables with cumulative distribution function (CDF) and probability density function (PDF) defined as
follows:
F X ðxÞ :¼ P½X 6 x�; f X ðxÞ :¼ dF X ðxÞ=dx; ð1Þ

where FX(x) and fX(x) denote the CDF and PDF of the random variable X, respectively. Throughout this

paper, a random variable X will be denoted as X(x), where x denotes association with a probability space

and is used to emphasize randomness in X.

The mathematical expectation of X(x) can be defined using any of these equivalent forms
EðX Þ :¼
Z
X
X ðxÞ dPðxÞ ¼

Z
X
X ðxÞPðdxÞ ¼

Z
B

xF X ðdxÞ ¼
Z
B

xf X ðxÞ dx; ð2Þ
where Eð�Þ denotes the mathematical expectation operator.
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The function space L2(X) is defined as the space of all random variables X(x) with EðjX ðxÞj2Þ < 1. Fur-

ther, L2(X) is a Hilbert space with the inner-product between two random variables X(x) and Y(x) defined
as their covariance [14]. Also, convergence in L2(X) implies convergence in probability and convergence in

distribution, i.e.
Xn !
L2 X ) P½jXn � X j P �� ! 0; F XnðxÞ ! F X ðxÞ; as n ! 1; ð3Þ
where � > 0 and convergence is in sup-norm. We will attempt to construct approximations to random vari-

ables and stochastic processes in the form of sequences that converge uniformly according to Eq. (3).

Remark 1. The definitions in this section can be generalized to vectors of random variables denoted

as X(x): = (X1(x), . . .,Xm(x)) and spatio-temporally varying random fields (stochastic processes) denoted

as W(x, t,x).
2.2. Reduced modelling of stochastic processes

Theoretically, the stochastic process W(x, t,x) can be represented as a random variable at each spatial

and temporal location. This requires infinite random variables (a computational impossibility) for complete

characterization. Thus, we need techniques for reduced-order representation of stochastic processes. We

will now briefly describe two most popular ways of approximating a L2 (finite variance) stochastic process

using a truncated series expansion comprised of a few random variables.

Karhunen–Loève expansion (KLE) [15,16]: Let W(x, t,x) be a L2 stochastic process defined on a closed

spatial domain D and a closed time interval T. In short EðjW ðx; t;xÞj2Þ < 1 for all x 2 D and t 2 T. Then
the KLE approximation of W(x, t,x) is defined as
W ðx; t;xÞ � W N ðx; t;xÞ :¼ EðW ðx; t;xÞÞ þ
XN
i¼1

ffiffiffiffi
ki

p
niðxÞfiðx; tÞ; ð4Þ
where ki and fi(x, t) are the eigenvalues and eigenfunctions of the covariance kernel RWW ({x1, t1},{x2, t2})

of W(x, t,x) (see [16]) and (n1(x), . . .,nN(x)) form a set of N independent random variables with an orthog-

onality relation EðnmðxÞnnðxÞÞ ¼ dmn. Also, the joint PDF of (n1(x), . . .,nN(x)) depends on the nature of
W(x, t,x).

Remark 2. In practice, N is taken to be a sufficiently small number and is referred to as the KL dimension

or the input dimensionality.

In order to define the KLE in Eq. (4), an a priori knowledge of the covariance kernel is required. This
information is not available for the outputs of a continuum system (often solutions of a system of stochastic

partial differential equations (SPDEs)). Hence, in the GPCE approach, we look for a suitable trial basis

comprised of polynomials in L2-random variables such that W(x, t,x) can be represented as a sum of its

projections on the trial basis [2].

Generalized polynomial chaos expansion [3,4]: Here, any L2-stochastic process (typically an output

quantity) is represented in terms of a trial basis for L2(X) consisting of hypergeometric orthogonal

polynomials from the Askey series [2]. The truncated GPCE of an output random variable X(x) belonging
to L2(X) as a function of n: = (n1(x), . . .,nN(x))

T (see Eq. (4)) can be written as
X ðxÞ�
L2
XNðxÞ¼

L2 a0I0 þ
XN
i1¼1

ai1 I1ðni1ðxÞÞ þ � � � þ
XN
i1¼1

� � �
Xin�1

in¼1

ai1i2...in Inðni1ðxÞ; . . . ; ninðxÞÞ þ � � � ; ð5Þ
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where Inðni1ðxÞ; . . . ; ninðxÞÞ denote the Wiener–Askey polynomial chaos of order n in terms of n and N is

defined in Remark 2. For notational convenience, Eq. (5) can be rewritten as
X ðxÞ ¼
X1
j¼0

âjwjðnÞ; ð6Þ
where the equality is interpreted in the L2(X) sense and there is a one-to-one correspondence between

Inðni1ðxÞ; . . . ; ninðxÞÞ and wj(n). Additionally, the following orthogonality relation holds:
E wiðnÞwjðnÞ
� �

:¼
Z
B

wiðnÞwjðnÞf ðnÞ dn ¼ E wiðnÞ
2

� �
dij; ð7Þ
where dij is the Kronecker delta function and f(n) is the joint PDF of n. Karniadakis and co-workers [4]

found that by choosing Askey polynomials with weighting function having same functional form as the

joint PDF of n, the GPCE Eq. (5) converges exponentially.

Remark 3. The GPCE encompasses the original polynomial chaos/Wiener–Hermite representation [17].

The convergence results proved by Cameron and Martin [18] for the original polynomial chaos, however,

are not yet extended for the case of GPCE, which is motivated and supported solely by numerical

experiments. Also, Eq. (6) is further truncated for computational purposes.

Pitfalls in the GPCE: From Eq. (5), the GPCE can be viewed as a Fourier-like expansion of X(x) in
terms of hypergeometric Askey polynomials in the random vector n. Thus, if X(x) as a function of x
possesses steep gradients or finite discontinuities, the GPCE approximation contains spurious oscillations

(Gibb�s effect). This invalidates the use of GPCE for addressing Problem II, wherein, the input–output

uncertainty propagation is highly non-linear. In this paper, we propose the support space method to

address the above (a localized representation of the output uncertainty along the lines of the stochastic

Galerkin method [9]).
2.3. Support space representation of uncertainty

Let the inputs to a stochastic system be approximated using KLE with an input dimensionality N. This

means that the stochastic inputs are represented in terms of N independent standard random variables

n1(x), . . .,nN(x). If the PDF of ni(x) is given by a bounded function fniðniÞ, then the joint PDF of inputs

is given by
f ðnÞ ¼
YN
i¼1

fniðniÞ: ð8Þ
We can now define the input support space as follows:
A :¼ fn :¼ ðn1; . . . ; nN Þ : fniðniÞ > 0; for i ¼ 1; . . . ;Ng: ð9Þ

Using the Doob–Dynkin lemma [9], any solution W(x, t,x) of the stochastic system can be represented as a
function of inputs Ŵ ðx; t; nÞ. Now consider a discretization of the support space into disjoint finite element

subdomains A ¼ [Nel
e¼1A

ðeÞ with a mesh size h (defined as the maximum diameter of A(e)). The support-space

representation of W(x, t,x) (denoted as Wh(x, t,x)) is constructed as a piecewise polynomial of degree q in

each element A(e). Note that the error in approximation of W(x, t,x) behaves as follows:
kW hðx; t;xÞ � W ðx; t;xÞkL2ðXÞ 6 M
Z
A

Ŵ
hðx; t; nÞ � Ŵ ðx; t; nÞ

� �2
dn

� �1
2

6 M
1
2Cðx; tÞhqþ1; ð10Þ
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where M = maxn2Af(n), C(x, t) is some deterministic function of space and time whose value depends on the

nature of W(x, t,x) and q is the order of interpolation. We emphasize that the support-space representation

includes GPCE as a special case when the number of elements is unity and the interpolating functions are

Askey polynomials. In general, however, the convergence rate of the support space method is lower than

that of GPCE and the method should not be used for modelling stochastic systems away from critical equi-
librium points.

Remark 4. It can be shown that the LHS of Eq. (10) is penalized severely in the regions with large values

for the input joint PDF f(n). Hence, for computational purposes, we use an importance sampled gridding

approach wherein the mesh discretization is refined at the high input PDF regions. Our initial investigations
point that ISG increases numerical accuracy for the same discretization level.

Comparison between support-space and Wiener–Haar approach: Haar-wavelets necessarily constitute a

piecewise constant representation/orthogonal sampling of a stochastic process whereas support-space is a

finite element representation of a stochastic process. Wiener–Haar and the GPCE approaches complement

each other (one can handle discontinuity in a more robust manner than the other), whereas, the support-

space method is actually a super-set of the GPCE approach. This could imply that it is theoretically possible

to attain the exponential convergence properties of the GPCE approach using the support-space approach

(though more research is needed on this). This however is not true for the Wiener–Haar approach.
3. Problem definition

Consider a closed spatial region D with a piecewise smooth boundary C in the d-dimensional Euclidean

space Rd . Consider two different partitions of the boundary C denoted as Cgm [ Chm and Cgt [ Cht, respec-

tively, where Cgm \ Chm = ; and Cgm \ Chm = ;. The system of equations governing natural convection of a

Newtonian fluid under Boussinesq approximation can be written as follows. Find the non-dimensional sto-
chastic velocity v(x, t,x), stochastic pressure p(x, t,x) and stochastic temperature h(x, t,x) satisfying:
ov

ot
þ v � rv ¼ �RaðxÞPrðxÞheg þr � r; ð11Þ

r � v ¼ 0; ð12Þ

oh
ot

þ v � rh ¼ r2h; ð13Þ

vðx; t;xÞ ¼ vgðx;xÞ; ðx; t;xÞ 2 Cgm �T� X; ð14Þ

n � rðx; t;xÞ ¼ hðx;xÞ; ðx; t;xÞ 2 Chm �T� X; ð15Þ

vðx; 0;xÞ ¼ v0ðx;xÞ; ðx; t;xÞ 2 D� f0g � X; ð16Þ

hðx; t;xÞ ¼ hgðx;xÞ; ðx; t;xÞ 2 Cgt �T� X; ð17Þ

rhðx; t;xÞ � n ¼ q0ðx;xÞ; ðx; t;xÞ 2 Cht �T� X; ð18Þ

hðx; 0;xÞ ¼ h0ðx;xÞ; ðx; t;xÞ 2 D� f0g � X; ð19Þ

where r is defined as �pI + 2Pr(x)�(v) and �(v) is defined as [($v) + ($v)T]/2. The stochastic non-dimen-

sional parameters Ra(x) and Pr(x) denote the Rayleigh number and the Prandtl number, respectively
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(defined later for each numerical example in Section 6). These parameters completely govern the evolution

of the natural convection system. In fact, CP1 corresponds to a critical Rayleigh number Rac.

We will now apply the variational multiscale method (VMS) to derive a stabilized finite element formu-

lation for the solution of Eqs. (11)–(19).
4. Variational multiscale method

Consider the following function spaces:
V ¼ v : v 2 ½L2ðX; L2ðT;H 1ðDÞÞÞ�d ; v ¼ vg on Cgm

n o
; ð20Þ

V0 ¼ w : w 2 L2ðX;H 1ðDÞÞ
� 	d

; w ¼ 0 on Cgm

n o
; ð21Þ

Q ¼ p : p 2 L2ðX; L1ðT; L2ðDÞÞÞf g; ð22Þ

Q0 ¼ q : q 2 L2ðX; L2ðDÞÞf g; ð23Þ

E ¼ h : h 2 L2ðX;L2ðT;H 1ðDÞÞÞ; h ¼ hg on Cgt


 �
; ð24Þ

E0 ¼ w : w 2 L2ðX;H 1ðDÞÞ; w ¼ 0 on Cgt


 �
: ð25Þ
Remark 5. The model Eqs. (11)–(13) form a system of coupled SPDEs. Hence, their solution requires a
non-linear iterative approach. Here, we will consider the non-dimensional stochastic velocity to be known

when solving for the non-dimensional temperature and vice-versa. We will also denote the known velocity

as a(x,x), a spatially varying divergence-free stochastic velocity field that is usually taken as the previous

non-linear iteration solution.

Variational formulation for energy conservation equation: Find the non-dimensional stochastic temper-

ature h 2 E such that for all w 2 E0 the following relation holds:
ðoth;wÞ þ ða � rh;wÞ þ ðrh;rwÞv ¼ ðq0;wÞCht
; ð26Þ
where the bilinear quantities are defined as follows:
ðg; hÞ :¼
Z
X

Z
D

gh dx dP; ðg; hÞv :¼
Z
X

Z
D

g � h dx dP: ð27Þ
Variational formulation for mass and momentum conservation equations: Find the non-dimensional sto-

chastic velocity and pressure ½v; p� 2 V� Q such that for all ½w; q� 2 V0 � Q0, the following relations

hold:
ðotv;wÞ þ ðv � rv;wÞ þ ðr; �ðwÞÞv ¼ �ðRaðxÞPrðxÞheg;wÞ þ ðh;wÞChm
; ð28Þ

ðr � v; qÞ ¼ 0; ð29Þ

where the bilinear quantities are defined as follows:
ðg; hÞ :¼
Z
X

Z
D

g � h dx dP; ðg; hÞv :¼
Z
X

Z
D

g : h dx dP: ð30Þ
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It is well documented that the use of standard Galerkin finite elements for the solution of Eqs. (26)–(29)

leads to spurious oscillations in the solution [11]. Thus, we require a stabilized finite element approach.

We will use the VMS approach for the derivation of a stabilized finite element formulation.

Additive scale decomposition: Under the VMS approach, we consider an additive scale decomposition for

the non-dimensional stochastic velocity, pressure and temperature of the form v ¼ �vþ v0; p ¼
�p þ p0 and h ¼ �hþ h0; where the quantities with a bar indicate the large scale solution contributions that

can be resolved by the computational grid and the quantities with a prime indicate the subgrid scale solutions

that denote the unresolved solution components. This decomposition of solutions induces a similar

decomposition for the corresponding function spaces as V ¼ �V�V0;V0 ¼ �V0 �V0
0;Q ¼ �Q� Q0;

Q0 ¼ �Q0 � Q0
0;E ¼ �E� E0 and E0 ¼ �E0 � E0

0.
4.1. Scale decomposed variational formulation for energy equation

By introducing the variational multiscale decomposition for temperature, we obtain the following large

scale and subgrid scale variational equations:
ðot�hþ oth
0; �wÞ þ ða � r�hþ a � rh0; �wÞ þ ðr�hþrh0;r�wÞv ¼ ðq0; �wÞCht

; ð31Þ

ðot�hþ oth
0;w0Þ þ ða � r�hþ a � rh0;w0Þ þ ðr�hþrh0;rw0Þv ¼ ðq0;w0ÞCht

: ð32Þ
With imposed condition of a twice-differentiable subgrid scale solution, we can express Eq. (32) in its strong

form as follows:
oth
0 þ a � rh0 � r2h0 ¼ �ðot�hþ a � r�h�r2�hÞ; ð33Þ
where the RHS of the above equation is to be understood in the sense that it represents the projection of
large scale residual of the energy equation onto the small scale function space E0.

Without loss of generality, we shall now consider a one-step trapezoidal rule for time integration. Con-

sider the following notations for a generic quantity f:
otfn ¼
1

dt
ðfnþ1 � fnÞ; f nþc ¼ cfnþ1 þ ð1� cÞfn; ð34Þ
where fn+1 and fn denote the values of f at time levels n and (n + 1), respectively and c is a parameter

between zero and one (taken as 0.5 in all numerical examples in Section 6).

After applying the time discretization to h, we can rewrite Eq. (33) as follows:
oth
0
n þLh0nþc ¼ Rnþc; ð35Þ
where the operator L and the residual Rn+c are defined as follows:
L :¼ a � r � r2; Rnþc :¼ �ot�hn � a � r�hnþc þr2�hnþc: ð36Þ

Derivation of algebraic subgrid scale solution model: We shall now proceed in the derivation along the

lines of [10,19,20]. Consider a finite element discretization of the domain D into a number of disjoint

element subdomains DðeÞ : e ¼ 1; . . . ;Nel; where Nel is the number of element subdomains. By taking

the element-wise Fourier transform of Eq. (35), we obtain:
1

cdt
þ i

a � k
h

þ jkj2

h2

 !
ĥ0nþc ¼ R̂nþc þ

1

cdt
ĥ0n: ð37Þ
Now, by application of Plancheral�s formula and mean value theorem, we end up with the following

approximate algebraic stochastic subgrid scale solution model for h0nþc:
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h0nþc �
L2
st Rnþc þ

1

cdt
h0n

� �
; st :¼ c1

1

h2
þ 1

cdt

� �2

þ c2
jaj
h

� �2
 !�1

2

: ð38Þ
The approximation in Eq. (38) is to be interpreted in the L2-sense and the parameters c1 and c2 are model

constants. The stabilization parameter st is also called as the stochastic intrinsic subgrid time scale for the

energy equation.

Remark 6. The stabilization parameter in Eq. (38) differs from that in [10] due to the presence of a time-

step parameter dt. Nevertheless, the asymptotic behavior of the parameters remains unaltered. Also, the

subgrid model has the subgrid solution at previous time level in the RHS. This term does not arise if we

assume a quasi-static subgrid solution.

VMS stabilized formulation: With strong regularity conditions (twice-differentiable temperature) we

obtain
ða � rh0nþc; �wÞ ¼ �ðh0nþc; a � r�wÞ; ðrh0nþc;r�wÞv ¼ �ðh0nþc;r2�wÞ: ð39Þ
We can now combine Eqs. (31), (38) and (39) to obtain a stabilized formulation as follows:
ðot�hn; �wÞ þ ða � r�hnþc; �wÞ þ ðr�hnþc;r�wÞv � ð�q0; �wÞCht
þ A

Nel

e¼1
ðot�hn þ a � r�hnþc �r2�hnþc;�st~w
�

þsta � r�wþ str2�wÞ þ ðh0n; st~w=ðcdtÞ � sta � r~w� str2~w� ~wÞ
	
¼ 0; ð40Þ
where the terms under square brackets are element-wise integrals and other remaining terms are domain

integrals. Also, ~w is defined as �w=ðcdtÞ. Numerical tests show that the effect of subgrid tracking on stabil-

ization is extremely small for laminar flow regime and hence, a quasi-static subgrid scale assumption

oth 0 � 0 can help in reducing the computational and memory cost.
4.2. Scale decomposed variational formulation for mass and momentum conservation equations

By introducing the variational multiscale decomposition for velocity and pressure, we obtain the follow-

ing large scale and subgrid scale variational equations:
ðot�vþ otv
0; �wÞ þ ða � r�vþ a � rv0; �wÞ þ ðrð�v; �pÞ; �ð�wÞÞv þ ðrðv0; p0Þ; �ð�wÞÞv

þ ðRaðxÞPrðxÞheg; �wÞ � ðh; �wÞChm
¼ 0; ð41Þ

ðr � �v; �qÞ ¼ 0; ð42Þ

ðot�vþ otv
0;w0Þ þ ða � r�vþ a � rv0;w0Þ þ ðrð�v; �pÞ; �ðw0ÞÞv þ ðrðv0; p0Þ; �ðw0ÞÞv

þ ðRaðxÞPrðxÞheg;w0Þ þ ðh;w0ÞChm
¼ 0; ð43Þ

ðr � �v; q0Þ ¼ 0: ð44Þ

We use Picard�s linearization approach for the non-linear convection term v � rv � a � r�vþ a � rv0, where a
is defined in Remark 5. Now, by assuming a twice-differentiable subgrid scale solution (velocity and pres-

sure), we can express Eqs. (43) and (44) in their strong forms as follows:
otv
0 þ a � rv0 � r � rðv0; p0Þ ¼ �RaðxÞPrðxÞheg � ot�v� a � r�vþr � rð�v; �pÞ; ð45Þ

r � v0 ¼ �r � �v; ð46Þ
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where the RHS of the above equations is to be understood as the projection of large scale residual of the

energy and continuity equation onto the small scale function space V0 � Q0. By carrying out an analysis

similar to the energy equation, we arrive at the following subgrid scale models:
p0nþc ¼ sðcÞRc; sðcÞ ¼
h2

c1cdt
þ PrðxÞ

� �2

þ c2jajh
c1

� � !1
2

; ð47Þ

v0nþc ¼ sðmÞ Rm þ v0n
cdt

� �
; sðmÞ ¼

h2

c1sðcÞ
; ð48Þ
where c1 and c2 have the same interpretation as for the energy equation.

VMS stabilized formulation: With strong regularity conditions (twice-differentiable velocity and once

continuously differentiable pressure), we obtain the following:
ða � rv0nþc; �wÞ ¼ �ðv0nþc; a � r�wÞ;
ðPrðxÞ�ðv0nþcÞ; �ð�wÞÞv ¼ �ðv0nþc; PrðxÞr � �ð�wÞÞ:

ð49Þ
We can combine Eqs. (41), (42) and (47)–(49) to obtain the following stabilized formulation for momentum

and mass conservation equations:
ðot�vn þ a � r�vnþc; �wÞ � ðrð�vnþc; �pnþcÞ; �ð�wÞÞv þ ðRaðxÞPrðxÞheg; �wÞ

þ A
Nel

e¼1
RaðxÞPrðxÞheg þ ot�vn þ a � r�vnþc �r � rð�vnþc; �pnþcÞ
��

�v0n=ðcdtÞ;�sðmÞð~wþ a � r�wþ PrðxÞr � �ð�wÞÞ
�	

� ð�h; �wÞChm
¼ 0; ð50Þ

ðr � �vnþc; �qÞ þ A
Nel

e¼1
RaðxÞPrðxÞheg þ ot�vn þ a � r�vnþc �r � rð�vnþc; �pnþcÞ � v0n=ðcdtÞ; sðmÞr�q
� �� 	

¼ 0;

ð51Þ
where the terms in square brackets are element-wise integrals and all other terms are whole domain inte-

grals. Also, ~w is defined as �w=ðcdtÞ. We can observe that the subgrid scale solution at the previous time step

and the time step size play a role in stabilizing the finite element formulation.
5. Algorithm and finite element implementation details

5.1. Implementation of the generalized polynomial chaos approach

Let the spatial domain be divided into Nel finite element subdomains and the number of basis functions

in each element equals nbf. We can represent a generic large scale stochastic function �f ðx;xÞ in its GPCE as

follows:
�f ðx;xÞ ¼
XP
j¼0

�f jðxÞwjðxÞ; ð52Þ
Note that here we choose to truncate the series expansion in Eq. (6) to the first (P + 1) terms. We now

represent each function �f jðxÞ in a piecewise polynomial finite element representation
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�f ðx;xÞ ¼
XP
j¼0

Xnbf
a¼1

�f ajN aðxÞwjðxÞ: ð53Þ
This can be written as
�f ðx;xÞ ¼
XnbfðPþ1Þ�1

r¼0

W rðx;xÞ�f r; ð54Þ
where r = (a � 1)(P + 1) + j with a = 1, . . .nbf, j = 0, . . .,P, and the stochastic finite element weighting func-

tions are now interpreted as the product of a standard Galerkin shape function with a generalized polyno-

mial chaos. The storage of the large scale solution and the subgrid solution requires a ndof · (P + 1) and a

Nel · nbf array, respectively, where ndof denotes the number of degrees of freedom.
5.2. Implementation of a support-space/stochastic Galerkin finite element approach

Here, we use a dual-layered grid. In the top layer, the spatial grid comprises of Nel elements, each

with nInt integration points and nbf basis functions. At each integration point, the spatial grid has a

pointer to an underlying support-space grid. We discretize the support-space grid using the importance

sampled gridding approach (refining the grid in regions with high input joint PDF). The support-space

grid comprises of Nels element subdomains such that A ¼ [Nels

es¼1A
ðesÞ. Each support-space grid element

has nbfs basis functions. Any random large-scale function �f ðx;xÞ is now represented at any spatial loca-
tion as follows:
�f ðx;xÞ ¼
Xnbf
a¼1

�f
h
aðxÞN aðxÞ; ð55Þ
where �f
h
a is a finite element field defined on the support-space grid. Further, the value of the large scale func-

tion at a given value of inputs ngiven 2 AðesÞ is obtained as follows:
Support space
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Approximation

Probability density function PDF of a single stochastic input (assumed), interpolant of the PDF and the support space grid.

cles denote the nodal points of the support space grid.



144 B. Velamur Asokan, N. Zabaras / Journal of Computational Physics 208 (2005) 134–153
�f ðx;xÞ ¼
Xnbf
a¼1

Xnbfs
j¼1

�f jaN
s
jðngivenÞN aðxÞ: ð56Þ
Thus the storage of the large scale solution and subgrid scale solution requires a ndof · ndofs and a Nel · -

nInt (per degree of freedom) array, respectively, where ndof and ndofs denote the number of degrees of free-

dom for the spatial domain and the support-space grid, respectively.

Remark 7. The support-space grid is adaptively refined at points of relatively large input joint PDF. The

actual probability density, the support-space grid and the approximation to the PDF for the case of a single

stochastic input is given in Fig. 1. It can be observed that the maximum point of the PDF has a node. The

discretization is refined proportional to the value of the PDF. This ensures that the error between the actual

PDF and its interpolant is minimized in the mean square sense.
5.3. Details of the solution algorithm

� Step 1: At time t = 0, large scale temperature, velocity and pressure are assumed known (taken to be the

initial conditions). The small scale solutions are taken to be zero.

� Step 2: For n = 0,1,2, . . ., do the following steps:

– Calculate h0n�1; v
0
n�1 if n is not zero.

– Solve for �hnþc assuming known velocity �v and v 0. (These are the stochastic velocity solutions at pre-

vious non-linear iteration level.)

– Solve for �vnþc assuming known temperature �h and h 0. (These are the stochastic temperature solutions

obtained from �hnþc and h 0 from previous non-linear iteration).
– Using �hnþc, obtain an estimate of h0nþc at each integration point within an element.

– Using �vnþc, obtain an estimate of v0nþc at each integration point within an element.

– Compute the next time step quantities �vnþ1; �pnþ1 and �hnþ1.

– If the solution has converged, proceed. Else, iterate step 2.

� End of algorithm.
6. Numerical examples

In this section, we consider numerical examples based on the focus of this paper:

� Example I. Simulation of natural convection away from critical equilibrium points (Problem I): Air at 293

K in a square cavity with an adiabatic body at the center.

� Example II. Simulation of natural convection near CP1 (Problem II): Water at 293 K in a square cavity.

Notation: g, gravitational acceleration; b, coefficient of thermal expansion of the fluid; m, kinematic
viscosity of the fluid and a, diffusivity of the fluid.

The Rayleigh and Prandtl numbers in each example are defined as
Ra ¼ gbL3DT ref

ma
; Pr ¼ m

a
;

where the characteristic length L and the reference temperature scale DTref are problem dependant and will

be defined separately for each example.



Fig. 2. Example I: (a) schematic of the computational domain; (b) mesh.
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6.1. Example I

Consider a square enclosure with a square adiabatic body at the center (see Fig. 2(a)). The enclosure is

filled with air at 293 K. The bottom wall of the enclosure is maintained at TH > 293 K, where TH is mod-

elled as a uniform random variable. The dimensionless temperature hH ¼ ðTH � 293 KÞ=ðEðT HÞ � 293 KÞ
is defined as follows:
Fig. 3.

state.
hH ¼ 1.0þ 0.05n; n¼d U ½�1; 1�;

where ¼d means �is distributed as� and U [a,b] denotes a uniform distribution in the interval between a and b.

The side walls are assumed to be adiabatic and hC = 0, W = L/3 (see Fig. 2(a)), the Prandtl number is 0.7
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Example I: (a) deterministic non-dimensional temperature at steady state; (b) mean non-dimensional temperature at steady
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and the Rayleigh number based on the enclosure side-length L and the temperature scale EðT HÞ � 293 K is

104. Thus, Ra is considered to be a deterministic quantity and the randomness is incorporated in the hot

wall boundary conditions. In Example II, we will consider an alternative approach. For this combination

of input parameters, the above natural convection system is away from any critical points. Thus the depen-

dance of output uncertainty on the input uncertainty is smooth. Hence, the GPCE approach yields an expo-
nentially convergent approximation to the outputs.
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Fig. 4. Example I: (a) deterministic non-dimensional x-velocity component at steady state; (b) mean non-dimensional x-velocity

component at steady state.
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Fig. 5. Example I: (a) deterministic non-dimensional y-velocity component at steady state; (b) mean non-dimensional y-velocity

component at steady state.
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Fig. 6. Example I: (a) first-order term in Legendre chaos expansion of non-dimensional temperature at steady state; (b) second-order

term in Legendre chaos expansion of non-dimensional temperature at steady state.
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Fig. 7. Example I: (a) first-order term in Legendre chaos expansion of non-dimensional x-velocity component at steady state;

(b) second-order term in Legendre chaos expansion of non-dimensional x-velocity component at steady state.
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A schematic of the computational mesh used for spatial discretization of the problem is provided in Fig.

2(b). A deterministic simulation with hH = 1.0, Pr = 0.7 and Ra = 104 is used to compare the results at stea-

dy state. A third-order Legendre chaos expansion (since input is uniformly distributed) was used for rep-

resentation of the temperature and flow fields. Instead of proceeding toward a symmetric steady state about

the centerlines of the square cavity as characterized by Rayleigh numbers less than 4 · 103 [21], we observe

in Figs. 3–8 that the steady state (computed at t = 1.5) is characteristic of Rayleigh–Bénard convection

without square body at the center. The mean temperature and velocity components correspond fairly well
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Fig. 8. Example I: (a) first-order term in Legendre chaos expansion of non-dimensional y-velocity component at steady state;

(b) second-order term in Legendre chaos expansion of non-dimensional y-velocity component at steady state.
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with the deterministic simulation results. Figs. 3(a) and (b) show the comparisons for steady-state temper-

ature, Figs. 4(a) and (b) show the comparisons for the x-velocity component and Figs. 5(a) and (b) show the

comparisons for the y-velocity component.

For the sake of completion, we also include the higher order coefficients of Legendre chaos correspond-

ing to the steady-state temperature and velocity in Figs. 6–8.

6.2. Example II

Consider a closed square cavity filled with water at 293 K. The bottom wall of the cavity is maintained at

an unknown temperature TH > 293 K. The side walls are assumed to be adiabatic. The top wall is kept at a
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Fig. 9. Example II: (a) mean non-dimensional x-velocity component at steady state using GPCE approach; (b) mean non-dimensional

y-velocity component at steady state using GPCE approach.
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constant temperature of 293 K. The Prandtl number is 6.95 and the Rayleigh number Ra is defined using

the side wall length and a stochastic temperature scale TH � 293 K. Here, unlike Example I, the stochastic

temperature scale induces a randomness in the Rayleigh number and the boundary conditions for the non-

dimensional solutions are taken to be deterministic.

This system is characterized by the first critical point CP1 at a Rayleigh number of Rac � 1700. Below
this Rayleigh number, the heat transfer is by conduction and the fluid flow is absent. Above Rac, well

known Rayleigh–Bénard instabilities are initiated. By modelling the Rayleigh number as a uniform random
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Fig. 10. Example II: (a) mean non-dimensional temperature at steady state for deterministic simulation at Ra = 1530; (b) prediction of

support-space method for non-dimensional temperature at steady state at Ra = 1530.
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Fig. 11. Example II: (a) mean non-dimensional x-velocity component at steady state for deterministic simulation at Ra = 1530;

(b) prediction of support-space method for non-dimensional x-velocity component at steady state at Ra = 1530.
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variable with mean 1700, we hope to capture the system behavior on either side of the CP1. In particular,

we assume the following uniform distribution model for the Rayleigh number:
Fig. 1

(b) pre

Fig. 13

suppo
Ra ¼ Racð1þ 0.1nÞ; n¼d U ½�1; 1�; Rac ¼ 1700.
This model corresponds to 10% fluctuation in Rayleigh number about the critical value. A 40-by-40 mesh

comprising of bilinear quadrilateral elements was used to discretize the spatial domain. Owing to the uni-

form PDF model for the Rayleigh number, ten elements were sufficient to discretize the support-space.
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2. Example II: (a) mean non-dimensional y-velocity component at steady state for deterministic simulation at Ra = 1530;

diction of support-space method for non-dimensional y-velocity component at steady state at Ra = 1530.
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. Example II: (a) mean non-dimensional temperature at steady state for deterministic simulation at Ra = 1870; (b) prediction of

rt-space method for non-dimensional temperature at steady state at Ra = 1870.
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For the sake of comparison with the GPCE approach, we consider a third-order Legendre-chaos expan-

sion for the solution temperature and flow fields. The temperature boundary condition on the cold wall is

hC = 0 and the temperature conditions at the hot wall are prescribed as follows (for the GPCE approach):
Fig. 15

(b) pre

Fig. 14

(b) pre
h0jhot ¼ 1; hrjhot ¼ 0; r ¼ 1; 2; 3. ð57Þ

In addition to the above two stochastic analysis approaches, we also consider two deterministic simulation

runs for Rayleigh numbers 1530 and 1870. These correspond to the two extreme values that the Rayleigh

number can take. The velocity contours for the simulation at Ra = 1530 and the simulation at Ra = 1870

can be thought of as lower and upper bounds of the flow velocity.
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. Example II: (a) mean non-dimensional y-velocity component at steady state for deterministic simulation at Ra = 1870;

diction of support-space method for non-dimensional y-velocity component at steady state at Ra = 1870.
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. Example II: (a) mean non-dimensional x-velocity component at steady state for deterministic simulation at Ra = 1870;

diction of support-space method for non-dimensional x-velocity component at steady state at Ra = 1870.
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(A) GPCE approach – steady-state results and discussion: The various results obtained for this simulation

near CP1 are summarized in Figs. 9–15. The GPCE approach does not provide satisfactory results even for

the steady-state mean velocity contours. This can be observed by viewing Figs. 9(a) and (b). The mean

velocity values must lie between the velocity values obtained for the two extreme Rayleigh numbers in Figs.

11(a) and 14(a). This argument holds since, at the lower extreme Rayleigh number, the flow is absent and at
the higher extreme Rayleigh number, the flow velocity is maximum. The GPCE however predicts an incor-

rect near-zero mean velocity. This points to the failure of the method. Since, the prediction for mean veloc-

ity is incorrect, we do not provide the higher order velocity statistics.

(B) Support space approach – steady-state results and discussion: A relatively coarse support-space (inter-

val [�1,1]) grid comprising of ten equal linear elements was used. Even for this grid, the predictions of

velocity at the two extreme Rayleigh numbers is fairly accurate. Further, the method has an added advan-

tage that we can obtain the flow and temperature patterns (L2 estimates) at any intermediate Rayleigh num-

ber by simple finite element interpolation. Thus, a single stochastic simulation can hold readily available
information of millions of deterministic simulations at slightly higher computation cost.

The comparisons between the prediction of the support-space method and the deterministic simulation

at a Rayleigh number of 1530 are shown in Figs. 10(a)–12(a). The comparisons between the prediction of

the support-space method and the deterministic simulation at a Rayleigh number of 1870 are shown in Figs.

13–15.

We also wish to comment on similar results obtained in [8], where the authors used Wiener–Haar expan-

sion with 32 degrees of freedom to discretize the support space. The method introduced in this work gives

comparable accuracy for one-third of the discretization level used in [8].
7. Summary

The paper presents a stabilized stochastic finite element implementation for the solution of natural con-

vection system of equations with uncertainty in initial conditions, boundary conditions and/or fluid prop-

erties. The stabilized formulations are derived using the variational multiscale framework. In particular two

kinds of problems were considered:

� Problem I. Simulation of natural convection far from critical points: Here, the GPCE approach was con-

sidered owing to its exponential convergence properties.

� Problem II. Simulation of natural convection wherein the inputs fluctuations are such that the system can be

above and below CP1 with finite probabilities: Here, the GPCE approach fails due to the highly non-linear

uncertainty propagation. An alternative support-space approach is devised to successfully address this

problem.

The salient features of the support-space approach in comparison with the GPCE approach as detected

in the results of the numerical experiments are as follows:

� The support-space approach incurs a larger computation cost (about a factor of 2d, where d is the KL

dimension of the input) in comparison to the GPCE approach for a given stochastic simulation of sys-

tems away from critical points.

� Though the support-space approach gives a fairly accurate estimate of the system output near critical

points, significant research still remains to be done for the method to become a powerful alternative
approach to repeated deterministic simulations as in Monte Carlo techniques.

� Both the GPCE and the support-space method can be easily integrated using a deterministic finite ele-

ment code with a few modifications.
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� The support-space approach can handle completely empirical probability density functions with no

change in the convergence properties (convergence is based on number of elements used to discretize

the support-space). GPCE on the other hand looses its convergence properties if the Askey chaos chosen

does not correspond to the input distribution.
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